I'm using Naive Bayes classifier:
 for i=1 :100
 load('datas3.mat');
 data=datas3;
 [n,m]=size(data);
 rows=(1:n);
 testcount=floor((0.2)*n);
 acc1=0; SenAr=0;  SpeAr=0; MCCAr=0;
 kk=10;
 for k=1: kk
   test_rows=randsample(rows,testcount);
   train_rows=setdiff(rows,test_rows);
   test=data(test_rows,:);
   train=data(train_rows,:);
   xtest=test(:,1:m-1);
   ytest=test(:,m);
   xtrain=train(:,1:m-1);
   ytrain=train(:,m);
   NB=NaiveBayes.fit(xtrain,ytrain);
   out=NB.predict(xtest); 
these errors were shown:
 Warning: NaiveBayes will be removed in a future release. Use fitcnb instead. 
  In NaiveBayes.fit (line 8)
   In accu (line 30) 
   Error using NaiveBayes.fit>gaussianFit (line 373)
  The within-class variance in each feature of TRAINING must be positive. The within-class variance 
  in feature 1 in class 0
  are not positive.
  Error in NaiveBayes.fit (line 337)
       obj = gaussianFit(obj, training, gindex);
  Error in accu (line 30)
     NB=NaiveBayes.fit(xtrain,ytrain);
I'll be very grateful to have your opinions. Thanks. 
        
More answer...