Labfans是一个针对大学生、工程师和科研工作者的技术社区。 | 论坛首页 | 联系我们(Contact Us) |
![]() |
![]() |
#2 |
初级会员
注册日期: 2016-10-11
帖子: 4
声望力: 0 ![]() |
![]()
%% 该代码为基于神经网络遗传算法的系统极值寻优
%% 清空环境变量 clc clear %% 初始化遗传算法参数 %初始化参数 maxgen=100; %进化代数,即迭代次数 sizepop=20; %种群规模 pcross=[0.4]; %交叉概率选择,0和1之间 pmutation=[0.2]; %变异概率选择,0和1之间 lenchrom=[1 1 1]; %每个变量的字串长度,如果是浮点变量,则长度都为1 bound=[3 4.5;2 2.75;40 55]; %数据范围 individuals=struct('fitness',zeros(1,sizepop), 'chrom',[]); %将种群信息定义为一个结构体 avgfitness=[]; %每一代种群的平均适应度 bestfitness=[]; %每一代种群的最佳适应度 bestchrom=[]; %适应度最好的染色体 %% 初始化种群计算适应度值 % 初始化种群 for i=1:sizepop %随机产生一个种群 individuals.chrom(i, ![]() x=individuals.chrom(i, ![]() %计算适应度 individuals.fitness(i)=fun(x); %染色体的适应度 end %找最好的染色体 [bestfitness bestindex]=min(individuals.fitness); bestchrom=individuals.chrom(bestindex, ![]() avgfitness=sum(individuals.fitness)/sizepop; %染色体的平均适应度 % 记录每一代进化中最好的适应度和平均适应度 trace=[avgfitness bestfitness]; |
![]() |
![]() |