Labfans是一个针对大学生、工程师和科研工作者的技术社区。 | 论坛首页 | 联系我们(Contact Us) |
![]() |
|
![]() |
#1 |
初级会员
注册日期: 2009-07-30
帖子: 6
声望力: 0 ![]() |
![]()
我也觉得有意思.
In[1]:= fs[x_] := Integrate[ Sin[t]/((Cos[t] + 0.015*Cos[t]/1.2 - (Cos[t])^2))^5, {t, 0, x}] In[2]:= {Cos[t] -> u, -Sin[t] DifferentialD[t] -> DifferentialD[u]} integrand = -1/(u + .015 u/1.2 - u^2)^5 Out[2]= {Cos[t] -> u, -DifferentialD[t] Sin[t] -> DifferentialD[u]} Out[3]= -(1/(1.0125 u - u^2)^5) In[4]:= fs[x_] := Integrate[integrand, {u, 1, Cos[x]}] In[5]:= Apart[integrand] Out[5]= 0.939777/(-1.0125 + u)^5 - 4.64087/(-1.0125 + u)^4 + 13.7507/(-1.0125 + u)^3 - 31.6889/(-1.0125 + u)^2 + 62.5954/(-1.0125 + u) - 0.939777/u^5 - 4.64087/u^4 - 13.7507/u^3 - 31.6889/u^2 - \ 62.5954/u In[6]:= {Integrate[%[[1]], {u, 1, Cos[x]}], Integrate[%[[2]], {u, 1, Cos[x]}], Integrate[%[[3]], {u, 1, Cos[x]}], Integrate[%[[4]], {u, 1, Cos[x]}], Integrate[%[[5]], {u, 1, Cos[x]}], Integrate[%[[6]], {u, 1, Cos[x]}], Integrate[%[[7]], {u, 1, Cos[x]}], Integrate[%[[8]], {u, 1, Cos[x]}], Integrate[%[[9]], {u, 1, Cos[x]}], Integrate[%[[10]], {u, 1, Cos[x]}]} Out[6]= {0.939777 If[ Re[Cos[x]] <= 1.0125 || Cos[x] \[NotElement] Reals, 1.024*10^7 - 0.25/(-1.0125 + Cos[x])^4, Integrate[1/(-1.0125 + u)^5, {u, 1, Cos[x]}, Assumptions -> ! (Re[Cos[x]] <= 1.0125 || Cos[x] \[NotElement] Reals)]], -4.64087 If[ Re[Cos[x]] <= 1.0125 || Cos[x] \[NotElement] Reals, -170667. - 0.333333/(-1.0125 + Cos[x])^3, Integrate[1/(-1.0125 + u)^4, {u, 1, Cos[x]}, Assumptions -> ! (Re[Cos[x]] <= 1.0125 || Cos[x] \[NotElement] Reals)]], 13.7507 If[Re[Cos[x]] <= 1.0125 || Cos[x] \[NotElement] Reals, 3200. - 0.5/(-1.0125 + Cos[x])^2, Integrate[1/(-1.0125 + u)^3, {u, 1, Cos[x]}, Assumptions -> ! (Re[Cos[x]] <= 1.0125 || Cos[x] \[NotElement] Reals)]], -31.6889 If[ Re[Cos[x]] <= 1.0125 || Cos[x] \[NotElement] Reals, -80. - 1./(-1.0125 + Cos[x]), Integrate[1/(-1.0125 + u)^2, {u, 1, Cos[x]}, Assumptions -> ! (Re[Cos[x]] <= 1.0125 || Cos[x] \[NotElement] Reals)]], 62.5954 If[ Re[Cos[x]] <= 1.0125 || Cos[x] \[NotElement] Reals, (4.38203 - 3.14159 I) + Log[-1.0125 + Cos[x]], Integrate[1/(-1.0125 + u), {u, 1, Cos[x]}, Assumptions -> ! (Re[Cos[x]] <= 1.0125 || Cos[x] \[NotElement] Reals)]], -0.939777 If[ Re[Cos[x]] >= 0 || Cos[x] \[NotElement] Reals, 1/4 - Sec[x]^4/4, Integrate[1/u^5, {u, 1, Cos[x]}, Assumptions -> ! (Re[Cos[x]] >= 0 || Cos[x] \[NotElement] Reals)]], -4.64087 If[ Re[Cos[x]] >= 0 || Cos[x] \[NotElement] Reals, 1/3 - Sec[x]^3/3, Integrate[1/u^4, {u, 1, Cos[x]}, Assumptions -> ! (Re[Cos[x]] >= 0 || Cos[x] \[NotElement] Reals)]], -13.7507 If[ Re[Cos[x]] >= 0 || Cos[x] \[NotElement] Reals, -(1/2) Tan[x]^2, Integrate[1/u^3, {u, 1, Cos[x]}, Assumptions -> ! (Re[Cos[x]] >= 0 || Cos[x] \[NotElement] Reals)]], -31.6889 If[ Re[Cos[x]] >= 0 || Cos[x] \[NotElement] Reals, 1 - Sec[x], Integrate[1/u^2, {u, 1, Cos[x]}, Assumptions -> ! (Re[Cos[x]] >= 0 || Cos[x] \[NotElement] Reals)]], -62.5954 If[ Re[Cos[x]] >= 0 || Cos[x] \[NotElement] Reals, Log[Cos[x]], Integrate[1/u, {u, 1, Cos[x]}, Assumptions -> ! (Re[Cos[x]] >= 0 || Cos[x] \[NotElement] Reals)]]} In[7]:= % /. x -> 1 Out[7]= {9.62331*10^6, 792028., 43971.5, 2468.01, 227.326 + 0. I, 2.52193, 8.26076, 16.6763, 26.9615, 38.5354} In[8]:= Apply[Plus, %] Out[8]= 1.04621*10^7 + 0. I In[9]:= %%% /. x -> 0 Out[9]= {0., 0., 0., 0., 0. + 0. I, 0, 0, 0, 0, 0} In[10]:= %%%% /. x -> .5 Out[10]= {9.62261*10^6, 791413., 43624.7, 2300.24, 148.91 + 0. I, 0.161163, 0.741877, 2.05193, 4.42042, 8.17398} In[11]:= Apply[Plus, %] Out[11]= 1.04601*10^7 + 0. I 这样,在虚数符号前的系数就是0.了,是不是计算精度的问题? |
![]() |
![]() |