Labfans是一个针对大学生、工程师和科研工作者的技术社区。 论坛首页 | 联系我们(Contact Us)
MATLAB爱好者论坛-LabFans.com
返回   MATLAB爱好者论坛-LabFans.com > 其它 > 广告与招聘
广告与招聘 这里是发招聘信息和广告的地方
 
 
主题工具 显示模式
旧 2010-03-06, 17:38   #1
greensim
普通会员
 
注册日期: 2008-10-06
年龄: 25
帖子: 53
声望力: 18
greensim 正向着好的方向发展
默认 【原创】基于遗传算法的投影寻踪模型Matlab源码

投影寻踪是数据挖掘领域的一种重要方法,下面的源码使用遗传算法用于投影寻踪最佳投影向量的优化。本源码由GreenSim团队原创,转载请注明,有意购买源码或代写相关程序,请与GreenSim团队联系。

%% “投影寻踪+遗传算法优化”的主仿真程序
% GreenSim团队原创作品,转载请注明
% 欢迎访问GreenSim——算法仿真团队→http://blog.sina.com.cn/greensim
%% 第一步:仿真参数设置
clear
clc
close all
load Q5.txt
DD=Q5;%导入D矩阵
[n,p]=size(DD);
np=15; %训练样本的个数,前面1~np个样本用于建立模型,剩下的样本用于预测
if np>=n
error('用于预测的样本个数不能大于或等于样本总数,请重新设置');
end
year=1:np;%选择参与计算的样本,默认选择全部
Factor=1:p;%选择部分指标,默认选择全部
D=DD(year,Factor);
K=50; %迭代次数
N=30; %种群规模
Pm=0.3; %变异概率
LB=-ones(1,p); %决策变量的下界
UB=ones(1,p); %决策变量的上界
Alpha=0.1; %窗口半径系数,典型取值0.1b

%% 调用遗传算法优化投影寻踪模型的程序

[BESTX,BESTY,ALLX,ALLY]=GAUCP(K,N,Pm,LB,UB,D,Alpha)

%% 以下均为整理输出结果
%所有数据都在workspace里,最值得关注的三个数据是
% Z 投影指标值,和参考文献里的符号是一致的
% Best_a 最佳投影向量,参考文献里也是用的符号a,这里加了个前缀Best,表示最佳
% BESTY 投影寻踪模型中的目标函数的变化情况,文献中的模型是最大化模型,这里按照惯例,对其加了个负号成为最小化模型

Best_a=(BESTX{K})';%方向向量
disp('最佳投影向量为');
disp(Best_a);
d=zeros(np,p);
DDjmax=max(DD);
DDjmin=min(DD);
for i=1:np
d(i,:)=(DD(i,:)-DDjmin)./(DDjmax-DDjmin);
end
Z=zeros(np,1);
for i=1:np
Z(i)=abs(sum(Best_a.*d(i,:)));
end
Z=abs(Z);

%%
figure(2)%投影散布图
plot(year,abs(Z),'bd','LineWidth',1,'MarkerEdgeColor','k','MarkerFaceColor','b','MarkerSize',5);
%axis([1,12,0,2.5]);%图形边界根据需要显示
grid on
xlabel('Year','FontName','Times New Roman','FontSize',12);
ylabel('Projective Value','FontName','Times New Roman','Fontsize',12);
%%
figure(3)
[newZ,I]=sort(Z);
newyear=year(I);
plot(year,abs(newZ),'bd','LineWidth',1,'MarkerEdgeColor','k','MarkerFaceColor','b','MarkerSize',5);
%axis([1,12,0,2.5]);%图形边界根据需要显示
grid on
xlabel('Year','FontName','Times New Roman','FontSize',12);
ylabel('Projective Value','FontName','Times New Roman','Fontsize',12);
%%
n2=n-np;
d2=zeros(n2,p);
for i=1:n2
d2(i,:)=(DD(i+np,:)-DDjmin)./(DDjmax-DDjmin);
end
Z2=zeros(n2,1);
for i=1:n2
Z2(i)=abs(sum(Best_a.*d2(i,:)));
end
Z2=abs(Z2);
disp('预测样本的投影预测值为');
disp(Z2);
%%
figure(4)%投影散布图
plot([Z;Z2],'bd','LineWidth',1,'MarkerEdgeColor','k','MarkerFaceColor','b','MarkerSize',5);
hold on
plot((np+1):n,Z2,'bo','LineWidth',1,'MarkerEdgeColor','r','MarkerFaceColor','r','MarkerSize',5);
legend('训练样本投影值','预测样本投影值');
%axis([1,12,0,2.5]);%图形边界根据需要显示
grid on
xlabel('Year','FontName','Times New Roman','FontSize',12);
ylabel('Projective Value','FontName','Times New Roman','Fontsize',12);
__________________
算法设计、代写程序,欢迎访问GreenSim团队主页→
http://blog.sina.com.cn/greensim
greensim 当前离线   回复时引用此帖
 


发帖规则
不可以发表新主题
不可以发表回复
不可以上传附件
不可以编辑自己的帖子

启用 BB 代码
论坛启用 表情符号
论坛启用 [IMG] 代码
论坛禁用 HTML 代码



所有时间均为北京时间。现在的时间是 20:01


Powered by vBulletin
版权所有 ©2000 - 2025,Jelsoft Enterprises Ltd.