Labfans是一个针对大学生、工程师和科研工作者的技术社区。 | 论坛首页 | 联系我们(Contact Us) |
![]() |
![]() |
#1 |
初级会员
注册日期: 2011-05-21
帖子: 1
声望力: 0 ![]() |
![]()
下面的是我的Rbf神经网络设计的程序:其中有几个我是摘抄过来的,有不懂的地方请高手把我的程序的每一步都注释出来。我的邮箱是[email protected].谢谢。
clear all clc aa=[-5.28 3.39 4.11 13.60 -8.46 3.02 3.46 13.20 -7.74 3.92 4.64 10.95 -17.32 3.92 4.64 28.13 43.03]; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% m=4; %%%%%%%%%%%%%%%%%%%%m为输入向量维数 for i=1:(length(aa)-m) for j=1:m x(i,j)=aa(i+j-1);%%%%%%%%%%%%%%%%%%%%%%%%%%%把aa转换成矩阵x end end x=x'; for i=1:(length(aa)-m) y(i)=aa(i+m); end y=y'; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%y为期望输出 c=x; %%%%%%%%%%%%%%%%%%%%%%%%%%%c为初始中心矢量 [NN,n]=size(x); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%采用二进制编码,编制初始控制基因码 ,群体个数为50 %%%%%%%%%%%%%%%%%%%% %%%用随机的方法生成50组控制基因 r=200;%%%%%%%r为群体个数,设为50 suiji=round(rand(n,r));%%%%%%%%%%%%%随机生成的n×50(元素为0、1)的控制基因矩阵, %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 选取网络宽度 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% z=0; for i=1:n for j=1:n if i~=j d(z+1)=norm(x(:,i)-x(:,j)); z=z+1; end end end kuan=max(d)/sqrt(2*n); kuandu=(0.8*(rand(1,n))+1)*kuan;%%%%%在宽度合理的估计区间内随机选取n个宽度, %%%%%这些宽度由下面的控制基因控制。 %%%%%%%%%%%%%%%%%%%%%%%%%%% 对控制基因进行解码,并计算回归矩阵 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% for k=1:400 %%%%%%规定最大进化次数为200次(是本程序的最外层循环)。 for t=1:r %%%%%%%%r为群体个数,此循环为第2层循环,在这层循环中会计算出, %%%%%%%%第k代基因控制下的网络参数、网络权值和网络的相对误差。 cc=c(:,find(suiji(:,t))); %%%%%%对中心进行解码 kuandu1=kuandu(:,(find(suiji(:,t)))');%%%%%%%%%%%对宽度进行解码 %%%%%%%在中心和宽度已知的条件下,计算回归矩阵 for i=1:n %%%%%%%%%n为输入向量个数 for j=1:length(kuandu1) %%%%%%length(kuandu1)为中心向量个数, p(i,j)=exp(-(norm(x(:,i)-cc(:,j),1))/(kuandu1(j)^2));%建立回归矩阵p,选高斯函数作为基函数, end %%其中x(:,i)为样本向量,cc(:,j)为中心向量 end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%确定网络的权值%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%在中心和宽度已知的情况下,用最小二乘法计算权值 w=pinv(p)*y; %最小二乘法调整权值向量w %%%%%%%%%%%%%%%%%%%%%%%计算网络的相对误差%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% wucha(t)=norm(y'-(p*w)',1)/norm(y',1);%%%%%%%%%求出相对误差 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%% 检查网络的相对误差是否满足条件,如果满足则跳出两层循环; %%%%%% 如果不满足条件,则对50个控制基因进行选择、交叉、变异。 if wucha(t)<0.01 %%%%%%%如果相对误差小于0.01,跳出内层循环,如果条件不满足,继续执行下面的选择、交叉、变异 pp=p; ww=w; break end end if min(wucha)<0.01 %%%%%%%%如果条件满足,跳出最外层循环,如果条件不满足,继续执行下面的选择、交叉、变异 pp1=pp; ww1=ww; break end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 选择 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% for t=1:r %%%%%r为群体个数50 shiyingdu(t)=(1/wucha(1,t))'; %%%%%%计算适应度 end g=round(49*rand(m,r)+1);%%%%%生成m×50的随机矩阵(元素为1-50内的整数) for i=1:r %%%%%r为群体个数50 for j=1:m if shiyingdu(g(j,i))==max(shiyingdu((g(:,i))')) %%%%%% 对控制基因进行选择,使用的是联赛选择方法, %%%%%%其思想是从群体中任意选择4个个体, dd(1,i)=g(j,i); %%%dd为选择的50个个体 %%%%%%其中适应度最高的个体保存到下一代。 end %%%%% 这一过程反复执行,直到保存到下一代 end %%%%% 的个体达到预先设定的数目(50)为止。 end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 交叉 %%%%%%%%%%%%%%%%%%%%%%%% q=round((n-1)*rand(1,1)+1); %%%%在1-n间随机取1个整数 for i=1:q aa=suiji(:,dd(i)); %%%%% 交叉:在这里实行单点交叉。具体操作是: bb=suiji(:,dd(51-i)); %%%% 在个体基因串中随机设定一个交叉点,实 suiji(:,i)=[(aa(1:q));(bb(q+1:n))]; %%%% 行交叉时,该点前或后的两个个体的部分结构 suiji(:,51-i)=[(bb(1:q));(aa(q+1:n))]; %%%% 进行互换,并生成两个新个体。 end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 变异 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% for i=1:r q=round((n-1)*rand(1,1)+1); %%%%在1-n间随机取1个整数 %%%% 变异:在这里采取基本变异算子。其具体操作是: %%%% 对群体中基因链码随机挑选一个基因位置 if suiji(q,i)==0 %%%% 并对这个基因位置的基因值取反,即0变成1,1变成0。 suiji(q,i)=1; else suiji(q,i)=0; end end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 绘制期望输出与网络输出的拟合曲线 %%%%%%%%%%%%%% h=1:n; z=y'; %%%%%期望输出 o=(pp1*ww1)'; %%%%实际输出 subplot(111) plot(h,z,'r-*',h,o,'b-*') legend('期望输出','网络输出'); title('期望输出与网络输出的拟合曲线'); xlabel('横轴(2007年1季度-2011年2季度)'); ylabel('纵轴(期望输出与网络输出的对比曲线)'); grid on %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%进行单步预测 x1=[3.92 4.64 28.13 43.03]';%(2010年9月-2010年12月)4维预测输入数据 for j=1:length(cc) p1(j,1)=exp(-(norm(x1-cc(:,j)))^2/(kuandu1(j)^2)); end yuecejieguo=(p1(:,1))'*ww1 %%%%%预测的结果 |
![]() |
![]() |