Labfans是一个针对大学生、工程师和科研工作者的技术社区。 论坛首页 | 联系我们(Contact Us)
MATLAB爱好者论坛-LabFans.com
返回   MATLAB爱好者论坛-LabFans.com > 其它 > 资料存档
资料存档 资料存档
回复
 
主题工具 显示模式
旧 2019-11-24, 13:41   #1
poster
高级会员
 
注册日期: 2019-11-21
帖子: 3,006
声望力: 66
poster 正向着好的方向发展
默认 What function to use to transform real-vaued numbers to lables in classification task

https://in.mathworks.com/help/deeplearning/gs/classify-patterns-with-a-neural-network.html explains how to apply multi layer perceptron for classification task. But it is unclear how to obtain the binary valued labels -- what function to use in the last layer. The model outputs real-valued numbers, so how to transform it to binary 0 and 1. In my dataset, the target is labelled either as 1 or 0 unlike the diagram given in the Matlab tutorial. So, my output layer contains 1 node. Once the model output is calculated, I can use a simple threshold function where all numbers greater than equal to 0.5 are labelled as 1 and the rest as zero. However, there must be some other functions or other thresholds as well. Can somebody please help in explaining how to obtain the labels? Thank you.





More...
poster 当前离线   回复时引用此帖
回复


发帖规则
不可以发表新主题
不可以发表回复
不可以上传附件
不可以编辑自己的帖子

启用 BB 代码
论坛禁用 表情符号
论坛启用 [IMG] 代码
论坛启用 HTML 代码



所有时间均为北京时间。现在的时间是 21:35


Powered by vBulletin
版权所有 ©2000 - 2025,Jelsoft Enterprises Ltd.