Labfans是一个针对大学生、工程师和科研工作者的技术社区。 论坛首页 | 联系我们(Contact Us)
MATLAB爱好者论坛-LabFans.com
返回   MATLAB爱好者论坛-LabFans.com > 其它 > 资料存档
资料存档 资料存档
回复
 
主题工具 显示模式
旧 2019-11-26, 22:41   #1
poster
高级会员
 
注册日期: 2019-11-21
帖子: 3,006
声望力: 66
poster 正向着好的方向发展
默认 Matlab - How to perform a sparse eigendecomposition?

I have a large n * n sparse matrix called L. constant k is a given value. I am supposed to do this:




perform a sparse eigendecomposition of the Laplacian L that computes
only the eigenvectors associated with the k smallest-magnitude
eigenvalues.




enter image description here



How can I do this?



This is what I have tried:



d = diag(eigs(L,k,'smallestabs'));





And then I am supposed to do this:




Then project matrix V (vertex positions) onto the basis spanned by
these eigenvectors and reconstruct a filtered V called V_new (version
of the mesh).




enter image description here



P is not important here. I just want the new V based on the D matrix. Basically I want to calculate this:



enter image description here



I have tried this:



pd = padarray(diag(d),[n-k,n-k],0,'post');
V_new = V * pd * V'


But seems not to be working, because the resulting V_new is very different than V.



What is the right way to do this?





More answer...
poster 当前离线   回复时引用此帖
回复


发帖规则
不可以发表新主题
不可以发表回复
不可以上传附件
不可以编辑自己的帖子

启用 BB 代码
论坛禁用 表情符号
论坛启用 [IMG] 代码
论坛启用 HTML 代码



所有时间均为北京时间。现在的时间是 23:07


Powered by vBulletin
版权所有 ©2000 - 2025,Jelsoft Enterprises Ltd.