Labfans是一个针对大学生、工程师和科研工作者的技术社区。 论坛首页 | 联系我们(Contact Us)
MATLAB爱好者论坛-LabFans.com
返回   MATLAB爱好者论坛-LabFans.com > 其它 > 资料存档
资料存档 资料存档
 
 
主题工具 显示模式
旧 2019-11-26, 22:41   #1
poster
高级会员
 
注册日期: 2019-11-21
帖子: 3,006
声望力: 66
poster 正向着好的方向发展
默认 Matlab - How to perform a sparse eigendecomposition?

I have a large n * n sparse matrix called L. constant k is a given value. I am supposed to do this:




perform a sparse eigendecomposition of the Laplacian L that computes
only the eigenvectors associated with the k smallest-magnitude
eigenvalues.




enter image description here



How can I do this?



This is what I have tried:



d = diag(eigs(L,k,'smallestabs'));





And then I am supposed to do this:




Then project matrix V (vertex positions) onto the basis spanned by
these eigenvectors and reconstruct a filtered V called V_new (version
of the mesh).




enter image description here



P is not important here. I just want the new V based on the D matrix. Basically I want to calculate this:



enter image description here



I have tried this:



pd = padarray(diag(d),[n-k,n-k],0,'post');
V_new = V * pd * V'


But seems not to be working, because the resulting V_new is very different than V.



What is the right way to do this?





More answer...
poster 当前离线   回复时引用此帖
 


发帖规则
不可以发表新主题
不可以发表回复
不可以上传附件
不可以编辑自己的帖子

启用 BB 代码
论坛禁用 表情符号
论坛启用 [IMG] 代码
论坛启用 HTML 代码



所有时间均为北京时间。现在的时间是 19:19


Powered by vBulletin
版权所有 ©2000 - 2025,Jelsoft Enterprises Ltd.