| 
			
			 初级会员 
			
			
			
			
				 
				注册日期: 2010-05-18 
				
				
				
					帖子: 1
				 
				
				
				声望力:  0 
				
				     
			 
	 | 
	
	
	
		
		
			
			
				 
				求助 计量经济模型中用Tikhonov正则化方法参数估计程序修改
			 
			 
			
		
		
		
			
			我最近正在做毕业论文,是关于不适定反问题的,最后要用多种正则化方法(如Tikhonov正则化方法)用MATLAB编程数值实现得到结果,问题是在一计量经济模型中有三个因自变量x1 x2 x3对结果y有贡献,要通过一些历史数据估计每个变量对结果的贡献系数,即估计y=a1*x1+a2*x2+a3*x3+u中的参数a1 a2 a3,u为随机干扰项。 
 
现在只有一些算法,不会自己修改,求高手不胜感激啊! 
 
function [x_lambda,rho,eta] = tikhonov(U,s,V,b,lambda,x_0) 
%TIKHONOV Tikhonov regularization. 
% 
% [x_lambda,rho,eta] = tikhonov(U,s,V,b,lambda,x_0) 
% [x_lambda,rho,eta] = tikhonov(U,sm,X,b,lambda,x_0) ,  sm = [sigma,mu] 
% 
% Computes the Tikhonov regularized solution x_lambda.  If the SVD 
% is used, i.e. if U, s, and V are specified, then standard-form 
% regularization is applied: 
%    min { || A x - b ||^2 + lambda^2 || x - x_0 ||^2 } . 
% If, on the other hand, the GSVD is used, i.e. if U, sm, and X are 
% specified, then general-form regularization is applied: 
%    min { || A x - b ||^2 + lambda^2 || L (x - x_0) ||^2 } . 
% 
% If x_0 is not specified, then x_0 = 0 is used 
% 
% Note that x_0 cannot be used if A is underdetermined and L ~= I. 
% 
% If lambda is a vector, then x_lambda is a matrix such that 
%    x_lambda = [ x_lambda(1), x_lambda(2), ... ] . 
% 
% The solution norm (standard-form case) or seminorm (general-form 
% case) and the residual norm are returned in eta and rho. 
 
% Per Christian Hansen, IMM, April 14, 2003. 
 
% Reference: A. N. Tikhonov & V. Y. Arsenin, "Solutions of 
% Ill-Posed Problems", Wiley, 1977. 
 
% Initialization. 
if (min(lambda)<0) 
  error('Illegal regularization parameter lambda') 
end 
m = size(U,1); 
n = size(V,1); 
[p,ps] = size(s); 
beta = U(:,1:p)'*b; 
zeta = s(:,1).*beta; 
ll = length(lambda); x_lambda = zeros(n,ll); 
rho = zeros(ll,1); eta = zeros(ll,1); 
 
% Treat each lambda separately. 
if (ps==1) 
 
  % The standard-form case. 
  if (nargin==6), omega = V'*x_0; end 
  for i=1:ll 
    if (nargin==5) 
      x_lambda(:,i) = V(:,1:p)*(zeta./(s.^2 + lambda(i)^2)); 
      rho(i) = lambda(i)^2*norm(beta./(s.^2 + lambda(i)^2)); 
    else 
      x_lambda(:,i) = V(:,1:p)*... 
        ((zeta + lambda(i)^2*omega)./(s.^2 + lambda(i)^2)); 
      rho(i) = lambda(i)^2*norm((beta - s.*omega)./(s.^2 + lambda(i)^2)); 
    end 
    eta(i) = norm(x_lambda(:,i)); 
  end 
  if (nargout > 1 & size(U,1) > p) 
    rho = sqrt(rho.^2 + norm(b - U(:,1:n)*[beta;U(:,p+1:n)'*b])^2); 
  end 
 
elseif (m>=n) 
 
  % The overdetermined or square general-form case. 
  gamma2 = (s(:,1)./s(:,2)).^2; 
  if (nargin==6), omega = V\x_0; omega = omega(1:p); end 
  if (p==n) 
    x0 = zeros(n,1); 
  else 
    x0 = V(:,p+1:n)*U(:,p+1:n)'*b; 
  end 
  for i=1:ll 
    if (nargin==5) 
      xi = zeta./(s(:,1).^2 + lambda(i)^2*s(:,2).^2); 
      x_lambda(:,i) = V(:,1:p)*xi + x0; 
      rho(i) = lambda(i)^2*norm(beta./(gamma2 + lambda(i)^2)); 
    else 
      xi = (zeta + lambda(i)^2*(s(:,2).^2).*omega)./... 
           (s(:,1).^2 + lambda(i)^2*s(:,2).^2); 
      x_lambda(:,i) = V(:,1:p)*xi + x0; 
      rho(i) = lambda(i)^2*norm((beta - s(:,1).*omega)./... 
               (gamma2 + lambda(i)^2)); 
    end 
    eta(i) = norm(s(:,2).*xi); 
  end 
  if (nargout > 1 & size(U,1) > p) 
    rho = sqrt(rho.^2 + norm(b - U(:,1:n)*[beta;U(:,p+1:n)'*b])^2); 
  end 
 
else 
 
  % The underdetermined general-form case. 
  gamma2 = (s(:,1)./s(:,2)).^2; 
  if (nargin==6), error('x_0 not allowed'), end 
  if (p==m) 
    x0 = zeros(n,1); 
  else 
    x0 = V(:,p+1:m)*U(:,p+1:m)'*b; 
  end 
  for i=1:ll 
    xi = zeta./(s(:,1).^2 + lambda(i)^2*s(:,2).^2); 
    x_lambda(:,i) = V(:,1:p)*xi + x0; 
    rho(i) = lambda(i)^2*norm(beta./(gamma2 + lambda(i)^2)); 
    eta(i) = norm(s(:,2).*xi); 
  end 
 
end 
 
 
相关数据见下: 
表二 1978-2008我国宏观经济数据增长率 
年度 国内生产总值增长率 最终消费增长率 资本形成总额增长率 货物和服务净出口增长率 
1978	-	-	-	- 
1979	11%	17%	7%	72% 
1980	12%	14%	8%	-24% 
1981	8%	11%	-1%	-176% 
1982	9%	10%	11%	706% 
1983	12%	11%	14%	-44% 
1984	21%	17%	23%	-97% 
1985	25%	23%	37%	-28323% 
1986	14%	13%	14%	-30% 
1987	17%	14%	12%	-105% 
1988	25%	26%	27%	-1414% 
1989	13%	13%	11%	23% 
1990	10%	8%	6%	-375% 
1991	17%	16%	17%	21% 
1992	23%	21%	28%	-55% 
1993	30%	27%	56%	-347% 
1994	35%	33%	28%	-193% 
1995	25%	26%	24%	57% 
1996	18%	19%	13%	46% 
1997	9%	9%	6%	96% 
1998	6%	6%	4%	7% 
1999	3%	7%	4%	-26% 
2000	9%	10%	6%	6% 
2001	7%	8%	22%	-3% 
2002	9%	7%	15%	33% 
2003	12%	7%	23%	-3% 
2004	17%	29%	24%	37% 
2005	33%	11%	17%	151% 
2006	16%	14%	17%	63% 
2007	21%	17%	18%	40% 
2008	17%	16%	20%	3%
		 
		
		
		
			
		
		
		
		
		
		
		
	 |