引用:
作者: zgygliang
那用ployfit命令怎么解呢?奇次幂的参数怎么处理?
|
不好意思,我大致看了一下,ployfit命令是连续的。我初步想了一下,是不是可以这样来用
设偶次多项式为
f(x)=a0+a2*x^2+a4*x^4+...+a(2n)*X^(2*n),那么f(x)是偶函数,也就是说f(-x)=f(x).
根据这一性质我们可以得到如下方法
设有一组数据x,y对应的是偶次多项式
那么我们拟合两次
第一次拟合
ployfit(x,y,16) %前提是x向量的长度要大于16,16为阶数
那么,我们得到的系数是
f(x)=a0+a1*x+a2*x^2+...+a15*x^15+a16*x^16; (1)
第二次拟合
ployfit(-x,y,16)
那么我们得到的系数是
f(-x)=a0'-a1’*x+a2'*x^2+...-a15'*x^15+a16'*x^16; (2)
那么(f(x)+f(-x))/2
就得到了偶数项的系数
(f(x)-f(-x))/2
就得到了奇数项的系数
不知道这样是不是可以,我没上机实践过,如果你上机试过了,请告知我结果,谢谢!