function varargout = ode45(ode,tspan,y0,options,varargin)
solver_name = 'ode45';
if nargin < 4
  options = [];
  if nargin < 3
    y0 = [];
    if nargin < 2
      tspan = [];
      if nargin < 1
        error('MATLAB

de45:NotEnoughInputs',...
              'Not enough input arguments.  See ODE45.');
      end  
    end
  end
end
% Stats
nsteps  = 0;
nfailed = 0;
nfevals = 0; 
% Output
FcnHandlesUsed  = isa(ode,'function_handle');
output_sol = (FcnHandlesUsed && (nargout==1));      % sol = odeXX(...)
output_ty  = (~output_sol && (nargout > 0));  % [t,y,...] = odeXX(...)
% There might be no output requested...
sol = []; f3d = []; 
if output_sol
  sol.solver = solver_name;
  sol.extdata.odefun = ode;
  sol.extdata.options = options;                       
  sol.extdata.varargin = varargin;  
end  
% Handle solver arguments
[neq, tspan, ntspan, next, t0, tfinal, tdir, y0, f0, odeArgs, odeFcn, ...
 options, threshold, rtol, normcontrol, normy, hmax, htry, htspan, dataType] = ...
    odearguments(FcnHandlesUsed, solver_name, ode, tspan, y0, options, varargin);
nfevals = nfevals + 1;
% Handle the output
if nargout > 0
  outputFcn = odeget(options,'OutputFcn',[],'fast');
else
  outputFcn = odeget(options,'OutputFcn',@odeplot,'fast');
end
outputArgs = {};      
if isempty(outputFcn)
  haveOutputFcn = false;
else
  haveOutputFcn = true;
  outputs = odeget(options,'OutputSel',1:neq,'fast');
  if isa(outputFcn,'function_handle')  
    % With MATLAB 6 syntax pass additional input arguments to outputFcn.
    outputArgs = varargin;
  end  
end
refine = max(1,odeget(options,'Refine',4,'fast'));
if ntspan > 2
  outputAt = 'RequestedPoints';         % output only at tspan points
elseif refine <= 1
  outputAt = 'SolverSteps';             % computed points, no refinement
else
  outputAt = 'RefinedSteps';            % computed points, with refinement
  S = (1:refine-1) / refine;
end
printstats = strcmp(odeget(options,'Stats','off','fast'),'on');
% Handle the event function 
[haveEventFcn,eventFcn,eventArgs,valt,teout,yeout,ieout] = ...
    odeevents(FcnHandlesUsed,odeFcn,t0,y0,options,varargin);
% Handle the mass matrix
[Mtype, Mfun, Margs, M] =  odemass(FcnHandlesUsed,odeFcn,t0,y0,options,varargin);
if Mtype>0  % non-trivial mass matrix  
  Msingular = odeget(options,'MassSingular','no','fast');
  if strcmp(Msingular,'maybe')
    warning('MATLAB

de45:MassSingularAssumedNo',['ODE45 assumes ' ...
              'MassSingular is ''no''. See ODE15S or ODE23T.']);
  elseif strcmp(Msingular,'yes')
     error('MATLAB

de45:MassSingularYes',...
           ['MassSingular cannot be ''yes'' for this solver.  See ODE15S '...
            ' or ODE23T.']);
  end
  if Mtype == 1
    [L,U] = lu(M);
  else
    L = [];
    U = [];
  end  
  % Incorporate the mass matrix into odeFcn and odeArgs.
  [odeFcn,odeArgs] = odemassexplicit(FcnHandlesUsed,Mtype,odeFcn,odeArgs,Mfun,Margs,L,U);
  f0 = feval(odeFcn,t0,y0,odeArgs{:});
  nfevals = nfevals + 1;
end
% Non-negative solution components
idxNonNegative = odeget(options,'NonNegative',[],'fast');
nonNegative = ~isempty(idxNonNegative);
if nonNegative  % modify the derivative function
  [odeFcn,thresholdNonNegative] = odenonnegative(odeFcn,y0,threshold,idxNonNegative);
  f0 = feval(odeFcn,t0,y0,odeArgs{:});
  nfevals = nfevals + 1;
end
t = t0;
y = y0;
% Allocate memory if we're generating output.
nout = 0;
tout = []; yout = [];
if nargout > 0
  if output_sol
    chunk = min(max(100,50*refine), refine+floor((2^11)/neq));      
    tout = zeros(1,chunk,dataType);
    yout = zeros(neq,chunk,dataType);
    f3d  = zeros(neq,7,chunk,dataType);
  else      
    if ntspan > 2                         % output only at tspan points
      tout = zeros(1,ntspan,dataType);
      yout = zeros(neq,ntspan,dataType);
    else                                  % alloc in chunks
      chunk = min(max(100,50*refine), refine+floor((2^13)/neq));
      tout = zeros(1,chunk,dataType);
      yout = zeros(neq,chunk,dataType);
    end
  end  
  nout = 1;
  tout(nout) = t;
  yout(:,nout) = y;  
end
% Initialize method parameters.
pow = 1/5;
A = [1/5, 3/10, 4/5, 8/9, 1, 1];
B = [
    1/5         3/40    44/45   19372/6561      9017/3168       35/384
    0           9/40    -56/15  -25360/2187     -355/33         0
    0           0       32/9    64448/6561      46732/5247      500/1113
    0           0       0       -212/729        49/176          125/192
    0           0       0       0               -5103/18656     -2187/6784
    0           0       0       0               0               11/84
    0           0       0       0               0               0
    ];
E = [71/57600; 0; -71/16695; 71/1920; -17253/339200; 22/525; -1/40];
f = zeros(neq,7,dataType);
hmin = 16*eps(t);
if isempty(htry)
  % Compute an initial step size h using y'(t).
  absh = min(hmax, htspan);
  if normcontrol
    rh = (norm(f0) / max(normy,threshold)) / (0.8 * rtol^pow);
  else
    rh = norm(f0 ./ max(abs(y),threshold),inf) / (0.8 * rtol^pow);
  end
  if absh * rh > 1
    absh = 1 / rh;
  end
  absh = max(absh, hmin);
else
  absh = min(hmax, max(hmin, htry));
end
f(:,1) = f0;
% Initialize the output function.
if haveOutputFcn
  feval(outputFcn,[t tfinal],y(outputs),'init',outputArgs{:});
end
% THE MAIN LOOP
done = false;
while ~done
  
  % By default, hmin is a small number such that t+hmin is only slightly
  % different than t.  It might be 0 if t is 0.
  hmin = 16*eps(t);
  absh = min(hmax, max(hmin, absh));    % couldn't limit absh until new hmin
  h = tdir * absh;
  
  % Stretch the step if within 10% of tfinal-t.
  if 1.1*absh >= abs(tfinal - t)
    h = tfinal - t;
    absh = abs(h);
    done = true;
  end
  
  % LOOP FOR ADVANCING ONE STEP.
  nofailed = true;                      % no failed attempts
  while true
    hA = h * A;
    hB = h * B;
    f(:,2) = feval(odeFcn,t+hA(1),y+f*hB(:,1),odeArgs{:});
    f(:,3) = feval(odeFcn,t+hA(2),y+f*hB(:,2),odeArgs{:});
    f(:,4) = feval(odeFcn,t+hA(3),y+f*hB(:,3),odeArgs{:});
    f(:,5) = feval(odeFcn,t+hA(4),y+f*hB(:,4),odeArgs{:});
    f(:,6) = feval(odeFcn,t+hA(5),y+f*hB(:,5),odeArgs{:});
    tnew = t + hA(6);
    if done
      tnew = tfinal;   % Hit end point exactly.
    end
    h = tnew - t;      % Purify h.     
    
    ynew = y + f*hB(:,6);
    f(:,7) = feval(odeFcn,tnew,ynew,odeArgs{:});
    nfevals = nfevals + 6;              
    
    % Estimate the error.
    NNrejectStep = false;
    if normcontrol
      normynew = norm(ynew);
      errwt = max(max(normy,normynew),threshold);
      err = absh * (norm(f * E) / errwt);
      if nonNegative && (err <= rtol) && any(ynew(idxNonNegative)<0)
        errNN = norm( max(0,-ynew(idxNonNegative)) ) / errwt ;
        if errNN > rtol
          err = errNN;
          NNrejectStep = true;
        end
      end      
    else
      err = absh * norm((f * E) ./ max(max(abs(y),abs(ynew)),threshold),inf);
      if nonNegative && (err <= rtol) && any(ynew(idxNonNegative)<0)
        errNN = norm( max(0,-ynew(idxNonNegative)) ./ thresholdNonNegative, inf);      
        if errNN > rtol
          err = errNN;
          NNrejectStep = true;
        end
      end            
    end
    
      if err > rtol                       % Failed step
      nfailed = nfailed + 1;            
      if absh <= hmin
        warning('MATLAB

de45:IntegrationTolNotMet',['Failure at t=%e.  ' ...
                  'Unable to meet integration tolerances without reducing ' ...
                  'the step size below the smallest value allowed (%e) ' ...
                  'at time t.'],t,hmin);
      
        solver_output = odefinalize(solver_name, sol,...
                                    outputFcn, outputArgs,...
                                    printstats, [nsteps, nfailed, nfevals],...
                                    nout, tout, yout,...
                                    haveEventFcn, teout, yeout, ieout,...
                                    {f3d,idxNonNegative});
        if nargout > 0
          varargout = solver_output;
        end  
        return;
      end
      
      if nofailed
        nofailed = false;
        if NNrejectStep
          absh = max(hmin, 0.5*absh);
        else
          absh = max(hmin, absh * max(0.1, 0.8*(rtol/err)^pow));
        end
      else
        absh = max(hmin, 0.5 * absh);
      end
      h = tdir * absh;
      done = false;
      
    else                                % Successful step
      NNreset_f7 = false;
      if nonNegative && any(ynew(idxNonNegative)<0)
        ynew(idxNonNegative) = max(ynew(idxNonNegative),0);
        if normcontrol
          normynew = norm(ynew);
        end
        NNreset_f7 = true;
      end  
                  
      break;
      
    end
  end
  nsteps = nsteps + 1;                  
  
  if haveEventFcn
    [te,ye,ie,valt,stop] = ...
        odezero(@ntrp45,eventFcn,eventArgs,valt,t,y,tnew,ynew,t0,h,f,idxNonNegative);
    if ~isempty(te)
      if output_sol || (nargout > 2)
        teout = [teout, te];
        yeout = [yeout, ye];
        ieout = [ieout, ie];
      end
      if stop               % Stop on a terminal event.               
        % Adjust the interpolation data to [t te(end)].   
        
        % Update the derivatives using the interpolating polynomial.
        taux = t + (te(end) - t)*A;        
        [ignore,f(:,2:7)] = ntrp45(taux,t,y,[],[],h,f,idxNonNegative);        
        
        tnew = te(end);
        ynew = ye(:,end);
        h = tnew - t;
        done = true;
      end
    end
  end
  if output_sol
    nout = nout + 1;
    if nout > length(tout)
      tout = [tout, zeros(1,chunk,dataType)];  % requires chunk >= refine
      yout = [yout, zeros(neq,chunk,dataType)];
      f3d  = cat(3,f3d,zeros(neq,7,chunk,dataType)); 
    end
    tout(nout) = tnew;
    yout(:,nout) = ynew;
    f3d(:,:,nout) = f;
  end  
    
  if output_ty || haveOutputFcn 
    switch outputAt
     case 'SolverSteps'        % computed points, no refinement
      nout_new = 1;
      tout_new = tnew;
      yout_new = ynew;
     case 'RefinedSteps'       % computed points, with refinement
      tref = t + (tnew-t)*S;
      nout_new = refine;
      tout_new = [tref, tnew];
      yout_new = [ntrp45(tref,t,y,[],[],h,f,idxNonNegative), ynew];
     case 'RequestedPoints'    % output only at tspan points
      nout_new =  0;
      tout_new = [];
      yout_new = [];
      while next <= ntspan  
        if tdir * (tnew - tspan(next)) < 0
          if haveEventFcn && stop     % output tstop,ystop
            nout_new = nout_new + 1;
            tout_new = [tout_new, tnew];
            yout_new = [yout_new, ynew];            
          end
          break;
        end
        nout_new = nout_new + 1;              
        tout_new = [tout_new, tspan(next)];
        if tspan(next) == tnew
          yout_new = [yout_new, ynew];            
        else  
          yout_new = [yout_new, ntrp45(tspan(next),t,y,[],[],h,f,idxNonNegative)];
        end  
        next = next + 1;
      end
    end
    
    if nout_new > 0
      if output_ty
        oldnout = nout;
        nout = nout + nout_new;
        if nout > length(tout)
          tout = [tout, zeros(1,chunk,dataType)];  % requires chunk >= refine
          yout = [yout, zeros(neq,chunk,dataType)];
        end
        idx = oldnout+1:nout;        
        tout(idx) = tout_new;
        yout(:,idx) = yout_new;
      end
      if haveOutputFcn
        stop = feval(outputFcn,tout_new,yout_new(outputs,

,'',outputArgs{:});
        if stop
          done = true;
        end  
      end     
    end  
  end
  
  if done
    break
  end
  % If there were no failures compute a new h.
  if nofailed
    % Note that absh may shrink by 0.8, and that err may be 0.
    temp = 1.25*(err/rtol)^pow;
    if temp > 0.2
      absh = absh / temp;
    else
      absh = 5.0*absh;
    end
  end
  
  % Advance the integration one step.
  t = tnew;
  y = ynew;
  if normcontrol
    normy = normynew;
  end
  if NNreset_f7
    % Used f7 for unperturbed solution to interpolate.  
    % Now reset f7 to move along constraint. 
    f(:,7) = feval(odeFcn,tnew,ynew,odeArgs{:});
    nfevals = nfevals + 1;
  end
  f(:,1) = f(:,7);  % Already have f(tnew,ynew)
  
end
solver_output = odefinalize(solver_name, sol,...
                            outputFcn, outputArgs,...
                            printstats, [nsteps, nfailed, nfevals],...
                            nout, tout, yout,...
                            haveEventFcn, teout, yeout, ieout,...
                            {f3d,idxNonNegative});
if nargout > 0
  varargout = solver_output;
end