登录论坛

查看完整版本 : MATLAB中的Houghlines


poster
2019-12-10, 20:30
使用霍夫线 (http://en.wikipedia.org/wiki/Hough_transform)检测图像中的线后 (http://en.wikipedia.org/wiki/Hough_transform) ,如何使用它来计算参考图像线的角度(旋转)变化?



回答:

读者注意:这是一个后续问题,请参考以下内容:


如何在MATLAB中的霍夫变换中选择最大强度? (https://stackoverflow.com/questions/1975206/how-to-select-maximum-intensity-in-hough-transform-in-matlab/1975261#1975261)
计算在MATLAB中移动的位移 (https://stackoverflow.com/questions/2062760/calculating-displacement-moved-in-matlab)
该过程类似于我之前展示的过程。在下面,我使用的是上一个问题的图像 (http://i182.photobucket.com/albums/x11/veronicafmy/FYP/pict1.jpg) (由于您只提供了一个,所以我将第一个旋转10度来创建另一个图像)。

我们首先检测两个图像的线条。我们借助Hough (http://www.mathworks.com/help/images/ref/hough.html) 变换 (http://www.mathworks.com/help/images/ref/houghlines.html) 功能来完成此操作 (http://www.mathworks.com/help/images/ref/houghpeaks.html) 。这看起来适用于两个图像:

https://i.stack.imgur.com/cINnK.png

接下来,我们要使用线端点作为控制点执行图像配准。首先,我们确保两个图像中的点彼此对应。我通过使用convhull (http://www.mathworks.com/help/matlab/ref/convhull.html)计算凸包来做到这一点, convhull (http://www.mathworks.com/help/matlab/ref/convhull.html)自动将它们按逆时针顺序排序(或者是相反方向!)。上面显示的数字指示顺序。

最后,我们使用cp2tform (http://www.mathworks.com/help/images/ref/cp2tform.html)函数获取转换矩阵,该矩阵用于对齐图像并提取平移,旋转和缩放。

以下是完整的代码:

%% # Step 1: read and prepare images %# (since you provided only one, I created the other by rotating the first). I1 = imread('http://i.stack.imgur.com/Se6zX.jpg'); I1 = rgb2gray( imcrop(I1, [85 35 445 345]) ); %# Get rid of white border I2 = imrotate(I1, -10, 'bilinear', 'crop'); %# Create 2nd by rotating 10 degrees %% # Step 2: detect the cross sign endpoints (sorted in same order) p1 = getCross(I1); p2 = getCross(I2); %% # Step 3: perform Image Registration %# Find transformation that maps I2 to I1 using the 4 control points for each t = cp2tform(p2,p1,'affine'); %# Transform I2 to be aligned with I1 II2 = imtransform(I2, t, 'XData',[1 size(I1,2)], 'YData',[1 size(I1,1)]); %# Plot figure('menu','none') subplot(131), imshow(I1), title('I1') subplot(132), imshow(I2), title('I2') subplot(133), imshow(II2), title('I2 (aligned)') %# Recover affine transformation params (translation, rotation, scale) ss = t.tdata.Tinv(2,1); sc = t.tdata.Tinv(1,1); tx = t.tdata.Tinv(3,1); ty = t.tdata.Tinv(3,2); scale = sqrt(ss*ss + sc*sc) rotation = atan2(ss,sc)*180/pi translation = [tx ty] 这是提取线端点的函数:

function points = getCross(I) %# Get edges (simply by thresholding) I = imfilter(I, fspecial('gaussian', [7 7], 1), 'symmetric'); BW = imclearborder(~im2bw(I, 0.5)); %# Hough transform [H,T,R] = hough(BW); %# Detect peaks P = houghpeaks(H, 2); %# Detect lines lines = houghlines(BW, T, R, P); %# Sort 2D points in counterclockwise order points = [vertcat(lines.point1); vertcat(lines.point2)]; idx = convhull(points(:,1), points(:,2)); points = points(idx(1:end-1),:); end 结果:

https://i.stack.imgur.com/PoT9N.png

scale = 1.0025 rotation = -9.7041 translation = 32.5270 -38.5021 旋转几乎恢复了10度(有一些不可避免的误差),缩放比例实际上是1(表示没有缩放)。请注意,在上面的示例中有一个平移组件,因为未围绕十字符号的中心执行旋转。



更多&回答... (https://stackoverflow.com/questions/2062826)